The Effects of Neutral Damping on Resistive Wall Mode Physics1

R. JAMES, US Coast Guard Academy/Stevens Institute of Tech., K. BECKER, Stevens Institute of Tech., J.M. HANSON, M.E. MAUEL, D.A. MAURER, G.A. NAVRATIL, T.S. PEDERSEN, Columbia University — The physics of the dissipation mechanism responsible for rotational stabilization of the resistive wall mode (RWM) continues to be an object of intense current research. On the High Beta Tokamak – Extended Pulse (HBT-EP), there is experimental evidence that edge neutral damping is a significant dissipation mechanism that affects tearing mode behavior \cite{1}. To quantify the possible effect of neutral damping on RWM physics, we have constructed a 15-channel linear photo-detector array to measure D\textalpha emission and its fluctuations. These measurements will be used in conjunction with a 1D space and 2D velocity kinetic transport model of the atomic and molecular deuterium penetration to quantify neutral profiles within the plasma \cite{2}. Initial quantification of the neutral damping contribution to RWM rotational stabilization utilizing the measured D\textalpha profiles to estimate the edge neutral density will be presented.

1Supported by U.S. DOE Grant DE-FG02-86ER53222.

\cite{1} E. D. Taylor, \textit{et al.}, Phys. Plasmas 9, 3938 (2002)
\cite{2} B. LaBombar, MIT PSFC RR-00-9, (2000).