Abstract Submitted
for the DPP07 Meeting of
The American Physical Society

Alpha Deposition in Magnetoinertial Fusion Targets

SETH THOMPSON, PRC UAH, NILESH DEHOTE, UAH, JASON CASSIBRY, PRC UAH, RONALD KIRKPATRICK, CHARLES KNAPP, LANL, S.T. WU, CSPAR UAH, PROPULSION RESEARCH CENTER COLLABORATION, LOS ALAMOS NATIONAL LABS COLLABORATION — We performed a Monte Carlo simulation for plasmas with closed field line topology to quantify alpha deposition in magnetoinertial fusion (MIF) targets. It was assumed that the born-on position and initial velocity vector of an alpha particle is isotropic. The total energy deposited via scattering collisions is determined for a single alpha particle. This process is then repeated to achieve a statistical average. This quantity is volume averaged to get the fractional energy deposited in a target with a given set of conditions. Results were obtained for purely azimuthal, uniform and extended to field reversed configurations. Lindl-Widner diagrams were generated to identify fusion ignition regions in the MIF parameter space.