Abstract for an Invited Paper
for the DPP08 Meeting of
The American Physical Society

Observation of ICRF Mode Conversion Plasma Flow Drive on Alcator C-Mod

YIJUN LIN, MIT Plasma Science and Fusion Center

Plasma flow driven by externally launched rf waves could be important in stabilizing micro- and macro-instabilities in tokamaks. We report the first observation of both toroidal (V_{ϕ}) and poloidal (V_{θ}) flows driven via an ICRF mode conversion (MC) process in D(3He) plasmas. At modest 3He levels ($n_{^3He}/n_e \sim 8\%$), in relatively low density plasmas, $\langle n_e \rangle \leq 1.3 \times 10^{20} \text{m}^{-3}$, heated with 50 MHz rf power ($B_{t0} \sim 5.1 \text{ T}$), strong V_{ϕ} in the co-current direction is observed by high-resolution x-ray spectroscopy. The central V_{ϕ} scales with the applied rf power ($\leq 30 \text{ km/s per MW}$), and is at least a factor of 2 more than the empirically determined intrinsic plasma rotation [1]. The rotation near the plasma center ($r/a < 0.3$) responds more quickly to the applied rf power than the outer region, indicative of a local flow drive source. Localized poloidal rotation ($0.3 \leq r/a \leq 0.5$) in the ion diamagnetic drift direction is observed when $P_{rf} \geq 1.5 \text{ MW}$ and increases with power ($\sim 2 \text{ km/s at 3 MW}$). Turbulence spectrum broadening seen by a phase contrast imaging (PCI) system indicates strong flow also exists in the main ions. The mode converted ion cyclotron wave (MC ICW) is observed by PCI and confirmed by 2-D full wave TORIC code simulation. The simulation result shows that due to the up-shifted $k_{||}$, the MC ICW is strongly damped on 3He ions in the vicinity of the MC layer, approximately on the same flux surfaces where poloidal flow is observed. The involvement of ion heating and short-wavelength slow wave is consistent with theoretical considerations for efficient rf flow drive. Our experimental results are comparable to the predictions [2], assuming similar ion interaction mechanism for the MC ICW and direct launch ion Bernstein wave. The feasibility of ICRF flow drive on ITER will be discussed. [1] J. E. Rice, et al, Nucl. Fusion 47, 1618 (2007). [2] J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 9, 3867 (2002).

1Work supported by US DoE Coop. Agreement No. DE-FC02-99ER54512.