The spectral-angular distribution measurements of fast protons from the rear side of a target in experiments on the SOKOL-P facility at laser intensity of 10^{19} W/cm2 D.S. GAVRILOV, D.A. VIKHLYAEV, S.A. GOROKHOV, D.A. DMITROV, A.L. ZAPYSOV, A.G. KAKSHIN, I.A. KAPUSTIN, E.A. LOBODA, V.A. LYKOV, A.V. POTAPOV, V.A. PRONIN, G.N. RYKOVANOV, V.N. SANZHIN, V.N. SAPRYKIN, K.V. SAFRONOV, P.A. TOLSTOUKHOV, A.A. UGODENKO, O.V. CHEFONOVA, A.V. ANDRIYASH, RFNC-VNIITF — The developed in RFNC-VNIITF 10-TW “SOKOL-P” laser facility was put into operation in 2002. It delivers the 0.8 ps of pulse duration and up to 8 J of on target energy. The mean intensity of $>10^{19}$ W/cm2 of high contrast irradiation have been achieved with the help of the off-axis parabola $f/1.5$, providing 6 µm FWHM focal spot. The ns scale intensity contrast ratio is $>2*10^{11}$, the energy contrast ratio (to non-ionizing 1 ms ASE pedestal) is $2*10^6$. Due to the high value of contrast ratio ultra thin Al foils down to 0.08 µm thick are not damaged before the main pulse arrival. Spatial-energy spectrum of fast protons (energies of 1...8 MeV) measured by two types of spectrometers; up to 1.5% of conversion efficiency of laser energy to proton energy; and 9 MeV of maximum proton energy have been obtained in laser based acceleration experiments.

D.S. Gavrilov
RFNC-VNIITF

Date submitted: 14 Jul 2008