Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence1 Z. ZHANG, Pontocho College of Art and Science, Kyoto, Japan, H. NOBU, Iwanura Electric Co, Osaka, Japan, T.S. HAHM, LU WANG2, Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA — An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell’s equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high $\vec{E} \times \vec{B}$ shear has been derived. In gyrokinetic Maxwell’s equation, the particle charge density and current have been explicitly evaluated via pull-back transformation from the gyrocenter distribution function. Our generalized ordering takes $\rho_i \ll \rho_{i\theta} \sim L_E \sim L_p$ as typically observed in the H-mode edge. We take $k_{\perp} \rho_i \sim 1$ for generality, and keep the relative fluctuation amplitudes $\epsilon \delta \phi / T_i \sim \delta B / B < 1$ up to the second order.

1This work is supported by U. S. DOE(TSH, WL).
2Permanent address: Department of Physics, Peking University, Beijing 100871, China