Abstract Submitted for the DPP08 Meeting of The American Physical Society

Stability of the ion-acoustic surface waves in a Lorentzian plasma¹ TAEJOON KIM, Hanyang University, MYOUNG-JAE LEE² — We investigated the stability of ion-acoustic surface waves propagating on a boundary of semi-infinite Lorentzian (kappa) plasma. The real and imaginary parts of the wave frequency $\omega = \omega_r + i\gamma$ are obtained as functions of the normalized wave number $k_x\lambda_e$ where k_x is the x-component of the wave number and λ_e is the electron Debye length. The phase speed of the wave is found be decreased as the spectral index of the Lorentzian distribution function is decreased. In the long wavelength limit, the scaled phase velocity $(\omega_r/\omega_{pi})/k_x\lambda_e$ becomes $\sqrt{\mu_K}$ where ω_{pi} is the ion plasma frequency and $\sqrt{\mu_{\kappa}}$ is a constant. The wave displays the resonance at $\omega_r/\omega_{pi} = 1/\sqrt{2}$ as expected as the case of Maxwellian plasma. The imaginary part of the wave frequency appears to be negative which exhibits the linear wave dissipation in a collisionless plasma called Landau damping. The maximum damping rate is obtained as $\lambda_{Max} = 0.14 M_{\kappa} \sqrt{m/M}$ at $k_x \lambda_e = 0.44 / \sqrt{\mu_{\kappa}}$ where M_{κ} is a kappa-dependent function, and m/M is the electric mass ratio. The damping of the wave disappears as $k_x \lambda_e \to \infty$.

¹This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-C00186).

²Corresponding author

Myoung-Jae Lee Hanyang University

Date submitted: 15 Jul 2008

Electronic form version 1.4