Two-Dimensional Investigation of Neutron-Yield Performance in Direct-Drive, Low-Adiabat D₂ Implosions on OMEGA

Neutron yields of direct-drive, low-adiabat ($\alpha \approx 2$ to 3) cryogenic D₂ target implosions on OMEGA have been systematically investigated using 2-D, radiation hydrodynamics DRACO simulations. We have focused on the neutron-yield degradation caused by initial target offset, ice-layer roughness, and low-mode laser-irradiation nonuniformities. Simulations provide a reasonably good guide to understanding experimental neutron-yield degradation for thin-shell (5 μm) cryogenic implosions. The neutron yields are found to be sensitive to the phase between the target offset and the ice-layer roughness. For 10-μm-thick-shell implosions, the experimental yield is generally lower than what low-mode DRACO simulations predict, for which high-mode studies will also be presented. This work was supported by U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

Suxing Hu
Laboratory for Laser Energetics, U. of Rochester

Date submitted: 15 Jul 2008

Electronic form version 1.4