Relationship between Edge Gradients and Plasma Flows in Alcator C-Mod

The edge pressure profiles in a tokamak are remarkably ‘stiff’, suggestive of a system near marginal stability. Electromagnetic turbulence appears to be an underlying cause [1]: edge pressure gradients normalized by the square of the poloidal magnetic field strength (i.e., the MHD ballooning parameter, α_{MHD}) are invariant in plasmas with the same normalized collisionality.

Yet, despite this relationship, x-point topology exerts a surprisingly strong influence; higher α_{MHD} are obtained when $B_x \nabla B$ points toward the active x-point [2] – Is this behavior connected to the strong flows and/or toroidal rotation that is observed in the edge, which changes with x-point topology [3]? Recently, an expanded set of diagnostics has been used to explore edge flows in detail for upper/lower x-points with forward/reversed magnetic fields. Systematic differences in parallel flows and toroidal rotation are evident. Cross-field flows measured by scanning Mach probes reveal an enhanced (diminished) velocity shear layer near the separatrix for $B_x \nabla B$ pointing toward (away from) the active x-point. [1] Nucl. Fusion 45 (2005) 1658; [2] Phys. Plasmas 15 (2008) 056106; [3] Nucl. Fusion 44 (2004) 1047.

1supported by USDoE Coop. Agreement DE-FC02-99ER54512.