Neutron production from interactions of high-intensity ultra-short pulse laser with a planar deuterated polyethylene target1 GEORGE PETROV, JACK DAVIS, Naval Research Laboratory — The neutron production from D(d,n)3He nuclear fusion reactions was studied with a two-dimensional electromagnetic particle-in-cell method combined with a three-dimensional Monte Carlo ion beam-target deposition model. The precursor for nuclear fusion reactions is high-energy (MeV) deuterons generated from a double-layer or uniform deuterated polyethylene target in the ultra-relativistic regime for peak laser intensities between 10^{19} and 10^{21} W/cm2. The angular scattering of neutrons is found to be non-isotropic having a significant component in the forward (laser propagation) direction. A neutron yield of 10^5 - 10^7 neutrons per Joule laser energy is inferred from simulations.

1This work was supported by the Defense Threat Reduction Agency (DTRA) and the Naval Research Laboratory (NRL) under the ONR 6.1 program.