Abstract Submitted
for the DPP08 Meeting of
The American Physical Society

Wall-shaped hohlraum influence on symmetry and energetics in
gas-filled hohlraums VERONIQUE TASSIN, FRANCK PHILIPPE, STEPHANE
LAFFITE, LAURENT VIDEAU, MARIE-CHRISTINE MONTEIL, BRUNO VILLE
LETTE, PHILIPPE STEMMLE, SOPHIE BEDNARCZYK, EMILIE PECHE,
BENOIT RENEAUME, CHRISTIAN TESSIEUX, CEA/DIF, 91297 Arpajon,
France — On the way to the LMJ completion, achieving ignition with 40 quads
in a 2-cone configuration will be attempted as a first step. Theoretical investigation
of a rugby-shaped hohlraum shows energetics optimization and a better symmetry
control compared to a cylindrical hohlraum [1]. We recently conducted experiments
on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum
configurations. We present here the experimental results. Energetics benefits are
shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on
time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums
configurations, we compare the foamball early-time radiographs, the D2Ar-filled cap-
sule time-integrated images and the core self-emission images. [1] M. Vandenboom-