Design of Asymmetrically driven hohlraum experiments on OMEGA
STUART MCALPIN, MARK STEVENSON, KELLY VAUGHAN,
JOHN FOSTER, MARK TAYLOR, AWE, AWE TEAM — A campaign of experi-
ments is planned on the OMEGA laser to asymmetrically drive an imploding capsule
within a hohlraum. This will act as a stringent test of the modeling of both the con-
ditions inside the hohlraum and the evolution of complex hydrodynamic systems.
These experiments will be modelled using a two step approach. A pure Lagrangian
code linked to an Eulerian code is used to capture the late-time hydrodynamics and
a single-step ALE (Arbitrary Lagrangian Eulerian) code is used as a fully integrated
test. A number of techniques have been identified which potentially offer significant
control of both the spatial and temporal asymmetry of the drive on the capsule.
These will be tested systematically in two stages. The drive as a function of posi-
tion and time will be measured by following the ablation front in aerogel spheres.
The effect of the drive on the late time hydrodynamics will be tested using the im-
plosion and potential jet formation in GDP coated glass capsules. In both cases the
evolution of the configuration will be determined using titanium area backlighting
at 4.7 keV combined with a gated x-ray imaging system.