Temperature gradients in solid targets irradiated by high intensity short pulse laser

SOPHIA N. CHEN, University of California, San Diego, PRAVESH K. PATEL, HYUN-KUNG CHUNG, ANDREAS J. KEMP, SEBASTIEN LE PAPE, BRIAN R. MADDOX, SCOTT C. WILKS, Lawrence Livermore National Laboratory, FARHAT BEG, University of California, San Diego

It has been observed that there exists a rapid decrease in thermal temperature in solid targets, as a function of depth, when irradiated by a high intensity short pulse laser. This phenomenon is further investigated using the Titan short pulse laser with intensities greater than 10^{20} W/cm2 and buried layer targets. The longitudinal temperature profile is determined by measuring K-shell spectra from a 0.4 µm copper tracer layer placed at various depths (i.e. 0-1.5 µm) within the 2.4 µm thick target. To study origins of K-shell x-rays in both space and time, a model involving hydrodynamics code HYADES and non-LTE atomic code FLYCHK has been developed. In addition, effect of the fast electron population on K-shell spectra is examined. Preliminary simulation results have produced good agreement with experimental measurements.

1This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and partially supported by US DOE under contract No.DE-FG02-05ER54834.

Sophia Chen
University of California, San Diego