Evidence of a Second Order Phase Transformation in Turbulent Fusion Plasmas

J.A. JOHNSON, III, J.B. TITUS, C.T. RAYNOR, E.-D. MEZONLIN, Florida A&M University, Tallahassee, Florida, J.M. MOLLER, E.B. HOOPER, H.S. MCLEAN, B. HUDSON, C.A. ROMERO-TALAMAS, R.D. WOOD, Lawrence Livermore National Laboratory, Livermore, California — Turbulence physics characterized as a Ginzburg-Landau phase transformation with the tools from BCS Theory predicts a new universal constant for all turbulent systems. At SSPX, with diagnostics for: ion temperature, T_i, from a Compact Neutral Particle Analyzer; electron temperature, T_e, from Profile Thomson Scattering; and electron density, n_e, from CO2 laser interferometry, we can now test these predictions using the influence of variations in the SSPX helicity injection during a single shot on turbulent magnetic field fluctuations. We will report on these successful tests and their implication for the broad class of isolated turbulent fusion plasma regimes.

1Research supported in part by grants from DOE Fusion Energy Sciences and the National Science Foundation.