Configurational Variations and Finite-Beta Effects on Neoclassical Viscosities and Flows in Stellarators. M. BREYFOGLE, T. MARINE, A.S. WARE, University of Montana, D.A. SPONG, Oak Ridge National Laboratory — The impact of magnetic geometry on neoclassical flows and viscosities for the Helically Symmetric Experiment (HSX) is investigated using the PENTA code [1,2]. Specifically, two topics are investigated: (1) finite-beta effects and (2) configurational variations. The PENTA code is used to calculate flows in HSX with the vacuum magnetic geometry and with finite-beta magnetic surfaces from the VMEC equilibrium code. This is done for the standard quasi-helically symmetric configuration of HSX, a symmetry-breaking mirror configuration and a hill configuration. The impact of these changes in the magnetic geometry on neoclassical viscosities and flows in HSX will be discussed.


This work is supported by the U.S. DOE under grant No. DE-FG02-03ER54699 at the University of Montana.