Shock-ignited, sub-MJ, green-light, direct-drive, ICF targets potentially fieldable on the NIF

KAI N. LAFORTUNE, L. JOHN PERKINS, LAURENT DIVOL, Lawrence Livermore National Laboratory — Shock ignition holds the potential for greatly increasing fusion yields and facilitating robust, direct-drive, sub-MJ targets[1]. NIF’s current polar-weighted drive geometry, although optimized for indirect drive, can potentially be used for polar, direct-drive experiments. Because shock-ignition decouples the compression and ignition phases of target assembly, targets have reduced sensitivity to hot-electrons, and thus using the NIF at the second-harmonic wavelength of 526 nm may potentially be advantageous. Radi-hydro-burn simulations using HYDRA of shock-ignited, direct-drive targets using NIF’s drive geometry, requiring less than 1 MJ of second-harmonic drive energy to achieve gains of up to 100 are studied. 1-D scoping studies have been performed to outline the source and target requirements. The robustness of the targets is explored with 2-D stability studies and examination of laser plasma instabilities. [1] R.Betti, C.Zhou, L.J.Perkins, K.Anderson, “Shock Ignition of Thermonuclear Fuel with High Areal Density”, Phys Rev. Lett 98, No. 15 (2007)

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-405465.

Kai N. LaFortune
Lawrence Livermore National Laboratory

Date submitted: 18 Jul 2008

Electronic form version 1.4