Long-Wavelength Turbulence Scaling Properties in DIII-D1 G.R. MCKEE, D.J. SCHLOSSBERG, M.W. SHAFER, University of Wisconsin-Madison, C.H. HOLLAND, University of California-San Diego, P. GOHIL, General Atomics — The scaling properties of long-wavelength density fluctuations are investigated in DIII-D L-mode and H-mode plasmas utilizing the expanded high-sensitivity 2D Beam Emission Spectroscopy (BES) system. BES employs a 64-channel system that utilizes a radially-scannable 8x8 array sampling multiple radial and poloidal correlation lengths, allowing for full sampling of the 2D wavenumber spectrum. Measurements of turbulence as a function of several important dimensionless parameters (κ, T_e/T_i, ion mass, ρ_*) are obtained, showing that fluctuation intensity increases strongly with decreasing plasma elongation (at constant q), consistent with increased thermal transport and reduced energy confinement. In contrast, increasing T_e/T_i increases momentum and thermal transport with little change in low-k density fluctuations. Measurements obtained during a ρ_* (ρ_i/a) scan in hydrogen will also be presented. Together, these measurements will be crucial for comparing with transport simulations, such as GYRO and TGLF.

1Work supported by the US DOE under DE-FG02-89ER53296, DE-FG02-97ER54917, and DE-FC02-04ER54698.

G.R. McKee
University of Wisconsin-Madison

Date submitted: 18 Jul 2008

Electronic form version 1.4