Abstract Submitted for the DPP08 Meeting of The American Physical Society

Multi-scale, Multi-field Turbulence Response During Electron Cyclotron Heating (ECH)¹ W.A. PEEBLES, T.L. RHODES, A.E. WHITE, G. WANG, J.C. HILLESHEIM, L. SCHMITZ, L. ZENG, E.J. DOYLE, University of California-Los Angeles, G.R. MCKEE, M.W. SHAFER, University of Wisconsin-Madison, J.C. DEBOO, M.A. VAN ZEELAND, General Atomics — ECH at $r/a \sim 0.4$ significantly modifies the electron temperature of LSN Ohmic plasmas with minimal effect on local ion temperature and electron density. A unique array of turbulence diagnostics was used to study the turbulence response across all turbulent scales $(0 < k\rho_s < 10)$ and for two distinct turbulent fields. At $r/a \sim 0.6$, low-k electron temperature fluctuations increased significantly (~ 3) with ECH. In contrast, low and intermediate-k density fluctuations remained unchanged or reduced slightly. High-k ($\sim 35 \text{ cm}^{-1}$) density fluctuations, associated with the electron temperature gradient driven mode, increased by >30%. Interestingly, low-k density and electron temperature fluctuations were found to be locally correlated across the frequency range $\sim 10-100$ kHz. This unique data set can be utilized to rigorously test the turbulence physics inherent in nonlinear gyrokinetic turbulence codes.

¹Work supported by the US DOE under DE-FG02-08ER54984, DE-FG02-89ER53296, and DE-FC02-04ER54698.

W.A. Peebles University of California-Los Angeles

Date submitted: 18 Jul 2008

Electronic form version 1.4