Abstract Submitted
for the DPP08 Meeting of
The American Physical Society

Studies of fast electron coupling efficiency using bookend targets
V.M. OVCHINNIKOV, G.E. KEMP, D.W. SCHUMACHER, L. VAN WOERKOM, R.R. FREEMAN, Department of Physics, The Ohio State University, K.U. AKLI, R.B. STEPHENS, General Atomics, T. BARTAL, F.N. BEG, T. MA, Department of Mechanical and Aerospace Engineering, UCSD, C.D. CHEN, Department of Physics, MIT, D. HEY, M.H. KEY, S. LE PAPE, A.J. MACKINNON, A.G. MACPHEE, P.K. PATEL, LLNL, W. THEOBALD, LLE, University of Rochester — Hollow cone targets are widely studied to understand their effects on laser coupling to fast electrons relevant to the FI concept for ICF. “Bookend” targets fabricated out of two planar copper foils (100 µm x 100 µm x 20 µm) joined at one edge, making an angle between the two halves similar to an open book, were designed to mock-up the cone geometry in 2D. Experiments were performed on Titan laser at LLNL with the laser delivering approximately 10^{20}W/cm^2 to the target ($\sim150 \text{J}, 0.7 \text{ps}$).

K_α emission measurements from Cu K_α imagers (spatially resolved) and a Highly Ordered Pyrolytic Graphite (HOPG) crystal (spectrally resolved) are presented for the Cu bookend targets for various opening angles and laser prepulse levels. The results are compared to recent bookend experiments on the MTW laser at LLE and previously reported studies of hollow cone targets at LLNL.1

1L. Van Woerkom et al., Phys. Plasmas 15, 056304 (2008)

V.M. Ovchinnikov

Date submitted: 18 Jul 2008

Electronic form version 1.4