Edge MHD Stability of Co-injected QH-mode Discharges in DIII-D

T.H. OSBORNE, K.H. BURRELL, M.S. CHU, P.B. SNYDER, W.P. WEST,
General Atomics — In this paper we compare the ideal MHD stability of the H-mode edge transport barrier region in QH-mode discharges with neutral beam injection oriented toroidally in the same direction as the plasma current (Co-NBI) to previous results with neutral beam injection counter to the plasma current (Counter-NBI). QH-mode had until recently only been obtained in discharges with a large fraction of neutral beam heating in the counter current direction under conditions where low toroidal number peeling modes are the dominate instability (low plasma density and/or strong cross-sectional shaping). The high rotational shear in the edge of Counter-NBI discharges, which is thought to provide the saturation mechanism for the instability [1], was also present in the Co-NBI QH-mode discharges.


1Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.