Abstract Submitted for the DPP08 Meeting of The American Physical Society Recent Progress on Ion-Driven Fast Ignition JUAN C. FERNAN-DEZ, B.J. ALBRIGHT, K.A. FLIPPO, D.C. GAUTIER, B.M. HEGELICH, M.J. SCHMITT, R.C. SHAH, L. YIN, Los Alamos National Laboratory, J.J. HON-RUBIA, M. TEMPORAL, Univ. Politecnica Madrid — We report on the encouraging progress from research on fusion fast ignition (FI) initiated by laser-driven ion beams. Compared to electrons, FI based on a beam of quasi-monoenergetic ions (protons or heavier ions) has the advantage of a more localized energy deposition, which minimizes the required total beam energy. High-current, laser-driven ion beams are very promising for this purpose, and because of their ultra-low transverse emittance, these beams can be focused to the required dimension, \sim tens of microns. Because they are created in ps timescales, these beams can deliver the power required to ignite the compressed D-T fuel, $\sim 10~{\rm kJ}$ / 50 ps. Our recent integrated calculations of ion-based FI include high fusion gain targets and a proof of principle experiment, which indicate the progress is feasible. The scientific issues and progress in the generation of the required laser-driven ion beams are summarized. ¹This work is sponsored by the US DOE/NNSA and the LANL LDRD program. Juan C. Fernandez Los Alamos National Laboratory Date submitted: 18 Jul 2008 Electronic form version 1.4