Abstract Submitted for the DPP08 Meeting of The American Physical Society

Direct drive target designs for laser fusion energy¹ ANDREW J. SCHMITT, J.W. BATES, D.E. FYFE, S.P. OBENSCHAIN, S.T. ZALESAK, Naval Research Laboratory, M. QUIGLEY, SAIC, R. BETTI, FSC & LLE, Univ. Rochester — We discuss the development of high-gain directly-driven targets for energy applications. We have simulated, in 1D and 2D, implosions of both conventional and shock-ignition targets in the low energy regime (<1MJ). All designs take advantage of efficient energy coupling and higher pressures available with 0.248 μm wavelength KrF light and zooming of the focal spot. We find significantly higher yields with shock ignition: gains near 100x at 0.3 MJ and over 200x at 1 MJ. Both conventional and shock ignited targets are fairly robust to achievable outer and inner surface finishes and inner ice surfaces. Rayleigh-Taylor (RT) instabilities are controlled with adiabat tailoring and low-aspect ratio targets. We assess risks and sensitivities due to hydro instabilities, laser-plasma instabilities, beam pointing and power balance, and the higher convergence ratios of these smaller targets.

¹Work supported by NNSA/DoE.

Andrew J. Schmitt Naval Research Laboratory

Date submitted: 19 Jul 2008

Electronic form version 1.4