Abstract Submitted for the DPP08 Meeting of The American Physical Society

Enhanced Neoclassical Transport Caused by Chaos Near an Asymmetric Separatrix¹ D.H.E. DUBIN, UCSD, YU.A. TSIDULKO, Budker Inst. — Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confinement. Recent experiments have investigated the loss rate when a central squeeze potential is applied to a magnetized plasma column, creating two trapped particle populations separated by a separatrix.² These populations react differently to the asymmetries, leading to a collisional boundary layer at the separatrix. A loss rate scaling as $\sqrt{\nu/B}$ due to the boundary layer is expected theoretically,³ provided that the separatrix itself is axisymmetric. However, when the separatrix is *asymmetric*, particles become trapped and detrapped as they follow collisionless orbits. This can lead to single-particle resonances and/or a chaotic region around the separatrix, giving enhanced transport. This effect may help explain a long-standing discrepancy between experiment and neoclassical theory, and could play an important role in tokamak and stellerator confinement. Theory and simulations of this collisionless chaotic transport will be presented.

¹Supported by NSF/DOE PHY-0613740 and NSF PHY-0354979.
²A.A. Kabantsev, adjacent poster.
³D.H.E. Dubin, Phys. Plasmas 15, 072112 (2008).

Daniel H.E. Dubin UCSD

Date submitted: 19 Jul 2008

Electronic form version 1.4