Reduction of TEM/ETG-scale Density Fluctuations in the Core and Edge of H-mode DIII-D Plasmas

L. SCHMITZ, UCLA

Improved confinement during H-mode has been linked to $E \times B$ shear suppression of large-scale ($k_\theta \rho_s \leq 0.3$) turbulence within an edge transport barrier. While larger scale eddies are preferentially suppressed by increased shear flow in this paradigm, the effects on smaller scale (TEM/ETG-scale) turbulence are less certain. Recent results from DIII-D provide the first experimental evidence that intermediate-scale turbulence ($1 < k_\theta \rho_s \leq 3$) together with larger-scale electron temperature fluctuations \cite{1} are also reduced promptly at the L-H transition. These reductions are not confined to the edge region. Intermediate-scale density fluctuations obtained via Doppler backscattering, are significantly reduced (30%-50%) over a range of normalized radii ($0.5 \leq r/a \leq 0.85$) within a few ms of the L-H transition. A larger reduction ($\geq 75\%$) is observed at the top of the pedestal ($r/a \sim 0.9$) within 0.2 ms. In addition, low-k electron temperature fluctuations ($k_\theta \rho_s \leq 0.3$, from correlation ECE) are strongly reduced ($>75\%$) at the L-H mode transition and during QH-mode ($r/a \sim 0.7$). Gyrokinetic simulation results \cite{2} predict that \tilde{T}_e fluctuations contribute significantly to L-mode electron heat transport, hence, the observed reduction is likely an important factor in the observed improved H-mode electron heat confinement ($\chi_{\text{L-H}}/\chi_{\text{L}} < 0.25$). Doppler backscattering is also utilized to probe time-dependent shear flows (i.e. zonal flows). The results clearly indicate that zonal flow levels are anti-correlated with the amplitude of intermediate-scale density turbulence in L-mode, suggesting that zonal flows play an important role in turbulence/transport regulation.

1Supported by the US DOE under DE-FG03-01ER54615, DE-AC02-76CH03073, DE-FC02-04ER54698, and DE-FG02-08ER54984.