Characterization of warm dense matter produced by laser-accelerated high-energy protons

M. NAKATSUTSUMI, J. FUCHS, A. MANCIC, J. ROBICHE, LULI, France, P. RENAUDIN, DPTA, CEA, France, P. COMBIS, DPTA,CEA, France, F. DORCHIES, M. HARMAND, CELIA, France, G. MAYNARD, J. VASSAUX, LPGP, France, P. MORA, CPhT, France, P. ANTICI, INFM, Italy, S. FOURMAUX, INRS-EMT, Canada, P. AUDEBERT, LULI, France

— Producing warm dense plasmas (WDM: solid density, few eV ∼ few 10s eV) is of interest for fundamental plasma physics or ICF. Laser-produced proton heating is of interest since they are short (<1ps) and deposit their energy volumetrically. Experiments were performed using the LULI 100 TW facility to create and characterize WDM. We used, (i) 2D time-resolved optical self-emission of the heated target, (ii) surface expansion velocity measurement through phase measurements of a reflecting probe beam, and (iii) x-ray absorption spectroscopy. We showed that we could produce quasi-uniform heating of solids, as suited for e.g. EoS measurements. Time-resolved solid-liquid-plasma transition has been measured, as well as energy-loss of MeV protons in warm dense plasmas.

1Grant E1127 from Region Ile-de-France, Grant No. ANR-06-BLAN-0392 from ANR-France.

M. Nakatsutsumi
LULI, France

Date submitted: 20 Jul 2008

Electronic form version 1.4