Abstract Submitted for the DPP08 Meeting of The American Physical Society

Finite Length Effects on Collisional Damping of Plasma Waves in Single-Species Plasmas¹ M.W. ANDERSON, T.M. O'NEIL, F. ANDEREGG, C.F. DRISCOLL, UCSD — A recent paper² analyzed the collisional damping of a plasma wave propagating on a single-species plasma column of infinite length. For high-phase-velocity ω/k_z and weak collisions $\nu_{\perp\parallel}$, the predicted damping rate is $\gamma \cong -\nu_{\perp\parallel}(k_z v_{th}/\omega)^2$, where $v_{th} \equiv \sqrt{T/m}$. Measurements of the $k_z = \pi/L_p$ mode on Mg⁺ plasmas corroborate the temperature and density scaling implicit in this formula; however, the measured damping rates are about $40 \times$ greater than predicted. Here we investigate finite-length effects as a possible source of this discrepancy. The ends of a plasma column couple higher k_z components to the fundamental mode;³; and these high- k_z components should enhance collisional damping. Motivated by this intuitive picture, we derive a generalized integral expression for the collisional damping rate that allows for arbitrary z-dependence in the waveform. We find that small amplitude high- k_z components can provide the dominant contribution to the mode damping, bringing theory and measurements into better accord.

¹Supported by NSF PHY-0354979.

²M.W. Anderson and T.M. O'Neil, Phys. Plasmas **14**, 112110 (2007). ³S.A. Prasad and T.M. O'Neil, Phys. Fluids **26**, 665 (1983).

> Michael W. Anderson UCSD

Date submitted: 20 Jul 2008

Electronic form version 1.4