Abstract Submitted
for the DPP08 Meeting of
The American Physical Society

Ion Beam Driven Warm Dense Matter Experiments1 F.M. BIENIOSEK, E. HENESTROZA, M.A. LEITNER, S.M. LIDIA, B.G. LOGAN, R.M. MORE, P.A. NI, P.A. SEIDL, W.L. WALDRON, LBNL, J.J. BARNARD, LLNL — We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments use a 0.3 MeV K+ beam from the NDCX-I accelerator. The WDM conditions are to be achieved by longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a 1-mm beam spot size, and 2-ns pulse length. As a technique for heating matter to high energy density, intense ion beams can deliver precise and uniform beam energy deposition, in a relatively large sample size, and can heat any solid-phase target material. The range of the beams in solid targets is less than 1 micron, which can be lengthened by using reduced density porous targets. We have developed a WDM target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial experiments will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

1This work was performed under U.S. DOE Contracts No. DE-AC02-05CH11231 and DE-AC52-07NA27344

Frank Bieniosek
LBNL

Date submitted: 08 Sep 2008
Electronic form version 1.4