Resonant Excitation of Millimeter Wave by Beating two Lasers in a Plasma Embedded with a Magnetic Wiggler¹ VIJAY GARG, Department of Physics, M.M. College, Modinagar-2010004, U.P India — Two high power lasers of frequencies \( w_1 \) and \( w_2 \), co-propagating in a semiconductor embedded with a magnetic wiggler, produce electromagnetic radiation at the difference frequency \( (w_1 - w_2) \). The lasers exert a ponder-motive force on the electrons at the difference frequency, giving them longitudinal oscillatory velocity. This velocity beats with the magnetic wiggler to produce a transverse current, driving a millimeter wave at a frequency \( w_1 - w_2 \) and wave number \( k_1 - k_2 + k_w \) where \( k_1 \) and \( k_2 \) are the wave number of the lasers and \( k_w \) is the wave number of the wiggler. For a suitable value of wiggler wave number the process becomes a resonant one, giving high efficiency of millimeter wave generation.

¹thankful to UGC for financial support