Autoresonant transition in the presence of noise and self-fields

IDO BARTH, Hebrew University of Jerusalem — A sharp threshold on the driving amplitude for transition to adiabatic nonlinear phase-locking (autoresonance) is characteristic of a single, electrostatically trapped particle starting in equilibrium and driven by a chirped frequency perturbation. In the presence of a weak noise or a small temperature (T) initial distribution of trapped particles, the threshold develops a width, scaling as $T^{1/2}$. The inclusion of repulsive self-fields makes the width of the autoresonant transition narrower.

1Supported by the Israel Science Foundation, Grant No. 1080/06.