Observation of “Anomalous” Energetic Ion Spectra by the E∥B Neutral Particle Analyzer on NSTX

S.S. MEDLEY, R.E. BELL, D.S. DARROW, E.D. FREDRICKSON, N.N. GORELENKOV, B.P. LEBLANC, A.L. ROQUEMORE, PPPL, Princeton, NJ, M. PODESTA, UC Irvine, CA, AND THE NSTX TEAM — An “anomalous” increase in E∥B NPA charge exchange neutral flux (∼4x) localized at the neutral beam (NB) injection full energy, $E_b = 90$ keV, is observed in NSTX. This so-called “High-Energy Feature (HEF)” appears in discharges only when kink-type modes ($f < 10$ kHz) are absent, TAE activity ($f \sim 10-150$ kHz) is weak ($\delta B_{rms} < 75$ mGauss) and CAE activity ($f \sim 400 – 1200$ kHz) is robust. The HEF exhibits a growth time of $\sim 20-80$ ms and develops a slowing down distribution that evolves over 100-400 ms, a time scale long compared with the ~ 50 ms equilibration time of the NB injected particles. Increases of $\sim 10-30\%$ in the measured neutron yield and total stored energy are observed to coincide with the HEF along with broadening of the CHERS $T_i(r)$ profile. The HEF is observed only in H-mode (not L-mode) discharges with injected NB power above 4 MW and is suppressed by vessel conditioning using lithium deposition at rates ~ 100 mg/shot sufficient to suppress ELM activity. Though a definitive mechanism has yet to be develop, the HEF appears to be driven by a form of CAE resonance.

1Work supported by U.S. DOE Contract DE-AC02-09CH11466.