Simulations of Directly-Driven Cone-in-Shell Implosions1 R.P.J. TOWN, D.S. CLARK, M.M. MARINAK, H.D. SHAY, M. TABAK, D.S. HEY, P.K. PATEL, Lawrence Livermore National Laboratory, K.S. ANDERSON, R. BETTI, W. THEOBALD, Laboratory for Laser Energetics, U. of Rochester — In fast ignition a short-pulse high intensity laser is used to generate relativistic electrons that subsequently deposit their energy into the compressed fuel to initiate a propagating burn wave. A high-density cone is often inserted into the capsule to allow a clear path for the ignition laser to the compressed fuel. The presence of the cone alters the dynamics in two ways from a spherically symmetric implosion. First, x-ray pre-heat can be absorbed by the cone causing the cone material to expand ahead of the imploding fuel leading to mixing of the high-Z cone material into the fuel. Second, the stagnation of the fuel near the cone can launch a jet into the cone increasing the transport distance of the short-pulse generated relativistic electrons. This paper reports on HYDRA simulations of directly driven OMEGA-scale plastic capsule implosions.

1This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.