Analytical model for fast reconnection in large guide field plasma configurations

A.N. SIMAKOV, Los Alamos National Laboratory, L. CHACÓN, Oak Ridge National Laboratory, D. GRASSO, CNR-INFM, Italy, D. BORGOGNO, Politecnico di Torino, Italy, A. ZOCCO, Culham Science Centre, UK — Significant progress in understanding magnetic reconnection without a guide field was made recently by deriving quantitatively accurate analytical models for reconnection in electron [1] and Hall [2] MHD. However, no such analytical model is available for reconnection with a guide field. Here, we derive such an analytical model for the large-guide-field, low-β, cold-ion fluid model [3] with electron inertia, ion viscosity \(\mu \), and resistivity \(\eta \). We find that the reconnection is Sweet-Parker-like when the Sweet-Parker layer thickness \(\delta_{SP} > (\rho_s^4 + d_e^4)^{1/4} \), with \(\rho_s \) and \(d_e \) the sound Larmor radius and electron inertial length. However, reconnection changes character otherwise, resulting in reconnection rates \(\frac{E_z}{B_{x}^2} \approx \sqrt{2\eta/\mu(\rho_s^2 + d_e^2)/(\rho_s w)} \) with \(B_x \) the upstream magnetic field and \(w \) the diffusion region length. Unlike the zero-guide-field case, \(\mu \) plays crucial role in manifesting fast reconnection rates. If it represents the perpendicular viscosity [3], \(\sqrt{\eta/\mu} \sim \beta^{-1}\sqrt{(m_e/m_i)(T_i/T_e)} \) and \(E_z \) becomes dissipation independent and therefore potentially fast.