LSP Modeling of Reflection and Absorption of an Intense Laser Pulse from a Solid Target

DOUGLASS SCHUMACHER, ANTHONY LINK, VLADIMIR OVCHINNIKOV, RICHARD FREEMAN, LINN VAN WOERKOM, The Ohio State University, MINGSHENG WEI, FARHAT BEG, University of California, San Diego, MICHAEL KEY, ANDREW MACKINNON, PRAVESH PATEL, Lawrence Livermore National Laboratory, LUBOMIR NIKOLIC, YING TSUI, ROBERT FEDOSEJEVS, University of Alberta — We describe the results of LSP modeling of laser reflection from solid-density gold slabs surrounded by lower density plasma (scale length of order 10 µm). We treat p-polarized light at various incident angles, intensities up to 10^{19} W/cm2 and various pulse widths. We examine absorbed, specularly reflected, and scattered light, and near and far field spatial and spectral modification of the beam. We find large, regular variation of reflectivity and scatter with all parameters, increased divergence and red chirp in the reflected beam, and other effects. We compare to recent experiment.

1Work supported by the U.S. Department of Energy under contracts DE-FG02-05ER54834, DE-AC52-07NA27344, and by an allocation of computing time from the Ohio Supercomputer Center.