Effects of unsteady sheared $\mathbf{E} \times \mathbf{B}$ flow on slab ITG turbulence

SHINYA MAEYAMA, SHUNJI TSUJI-IIO, HIROAKI TSUTSUI, Tokyo Institute of Technology, AKIHIRO ISHIZAWA, TOMOHIKO WATANABE, MILOS SKORIC, NORIYOSHI NAKAJIMA, National Institute for Fusion Science — Effects of unsteady sheared $\mathbf{E} \times \mathbf{B}$ flow on drift wave turbulence and heat transport driven by slab ion temperature gradient (ITG) instability are investigated by means of Landau fluid simulations. Here, the $\mathbf{E} \times \mathbf{B}$ flow, which consists of stationary and time-periodic oscillatory parts, is externally applied to the turbulence. The dependence on the amplitude and frequency of $\mathbf{E} \times \mathbf{B}$ flow are examined in the case where the energy of $\mathbf{E} \times \mathbf{B}$ flow is the same or larger than the energy of turbulence. In the case above, the transport oscillates with the same period as the $\mathbf{E} \times \mathbf{B}$ flow and the time-averaged transport coefficient is larger than the coefficient which is evaluated without oscillatory part of $\mathbf{E} \times \mathbf{B}$ flow. The time-averaged coefficient is maximized at the point where the amplitude of oscillatory part is equal to that of stationary part. As the frequency of $\mathbf{E} \times \mathbf{B}$ flow increases, the time-averaged coefficient decreases and is close to the coefficient which is evaluated without oscillatory part. These mechanisms are explained.

Shinya Maeyama
Tokyo Institute of Technology

Date submitted: 16 Jul 2009

Electronic form version 1.4