Abstract Submitted
for the DPP09 Meeting of
The American Physical Society

Supersonic flow through clumpy environments: simulations and experiments

M.R. DOUGLAS, B.H. WILDE, LANL, B.E. BLUE, J.F. HANSEN, GA, J.M. FOSTER, P.A. ROSEN, R.J.R. WILLIAMS, AWE, P. HARTIGAN, Rice University, A. FRANK, University of Rochester — Over the past decade, high resolution images of a number of Herbig-Haro objects using the Hubble Space Telescope have revealed complex, chaotic, evolving morphologies of bow shocks, knots, and filamentary structure. Such morphologies are likely a consequence of internal and terminal working surfaces moving into a medium that is highly inhomogeneous. To investigate how inhomogeneities play a role in shaping the morphology of such objects, laboratory experiments have been proposed to examine bow shock evolution as it propagates through a clumpy environment and subsequent development of small scale structure after shock passage. The experiments will be carried out at the Omega Laser Facility utilizing an existing platform which launches a near planar shock into an RF ($C_{15}H_{12}O_4$) cylinder. Two types of downstream targets will be embedded in the RF cylinder: a clumpy target consisting of a 1mm-diameter RF foam sphere containing ~ 47 randomly distributed 127-μm diameter ruby microspheres, and a 1 mm-diameter sphere target of “uniformly” mixed RF foam with sapphire nanopowder. Calculations pertaining to the experimental configuration will be presented and compared to experimental data, if available.

Melissa Douglas
Los Alamos National Laboratory

Date submitted: 16 Jul 2009