Overview of the Plasma Liner Experiment (PLX) S.C. HSU, LANL, F.D. WITHERSPOON, HyperV Tech., M.A. GILMORE, UNM, J.T. CASSIBRY, UAH, THE PLX TEAM — The Plasma Liner Experiment (PLX), to be built at LANL, will explore and demonstrate the feasibility of forming imploding spherical “plasma liners” that can reach peak pressures ~ 0.1 Mbar upon stagnation. The liners will be formed via merging of 30 dense, high Mach number plasma jets ($n \sim 10^{17}$ cm$^{-3}$, $M \sim 10–35$, $v \sim 50–70$ km/s, $r_{jet} \sim 5$ cm) in spherically convergent geometry. This is a staged, exploratory project where scientific issues will be studied first at modest stored energies (~ 300 kJ) before attempting to reach HED-relevant pressures (requiring ~ 1.5 MJ). We have arrived at these numbers via extensive 3D hydrodynamic simulations. The primary scientific goals are to identify/resolve physics issues and to develop a predictive understanding of plasma liner formation, liner ram pressure amplification during liner convergence, conversion of liner kinetic energy to thermal/radiation energy of the stagnated system, and confinement time of this energy. We are aiming for two scaled-up follow-on applications for this work if it is successful: (1) assembling repetitive, macroscopic (cm and μs scale) plasmas suitable for fundamental HEDP studies and (2) a standoff driver solution for magneto-inertial fusion. This poster provides an overview of the project and the research plan. Supported by the DOE Joint Program in HEDLP.

Scott Hsu
Los Alamos National Laboratory

Date submitted: 22 Jul 2009

Electronic form version 1.4