NIMROD Simulations of HIT-SI Plasmas C. AKCAY, C.C. KIM, T.R. JARBOE, B.A. NELSON, University of Washington, V.A. IZZO, UCSD — We present NIMROD simulation studies of current-drive, magnetic reconnection and relaxation behavior of the HIT-SI experiment. HIT-SI (Steady Inductive Helicity Injected Torus) is a spheromak that uses two semi-toroidal injectors to provide steady inductive helicity injection (SIHI). SIHI produces and sustains a spheromak by generating poloidal flux using relaxation current drive. The helicity injectors of the experiment are modeled as flux (ψ_{inj}) and current (I_{inj}) boundary conditions.

Our study uses a zero β resistive MHD model with uniform density. Lundquist number S and injector lambda, λ_{inj} ($= \mu_0 I_{\text{inj}} / \psi_{\text{inj}}$) characterize the parameter space. $S \left(= \sqrt{\frac{\mu_0}{\rho} \frac{B}{2 \pi R_0 \eta \lambda_{\text{sp}}^2}} \right)$ is the ratio of resistive diffusion to Alfvén transit time, ρ and η are the plasma density and resistivity, R_0 is the magnetic axis and λ_{sp} ($= \mu_0 j_\| / B$) is the spheromak lambda, 10.3 m$^{-1}$ for HIT-SI. For our current simulations we set $\lambda_{\text{inj}}=30$, and perform a scan in S for low values ($\sim 10 - 100$). Our results to date at $S=22$ and 35 show little relaxation during sustainment but growth of the $n=0$ magnetic energy and an increase in plasma current during the decay phase. Upon completion of this study at $\lambda_{\text{inj}}=30$ we will repeat the resistive MHD simulations at a lower λ_{inj} (~ 20) in order to chart the relaxation behavior as a function of λ_{inj}.

Cihan Akcay
University of Washington

Date submitted: 17 Jul 2009

Electronic form version 1.4