Abstract Submitted for the DPP09 Meeting of The American Physical Society

Disruptions in current-driven discharges in the Compact Toroidal Hybrid experiment¹ S. KNOWLTON, G. HARTWELL, J. HANSON, B. STEVENSON, J. ECKBERG, Auburn University, K. KAMDIN, University of Chicago — Disruption avoidance in stellarators is relevant to helical configurations with tokamak-like levels of bootstrap current, e.g. quasi-axisymmetric devices, and stellarator-tokamak hybrids. Disruptions are investigated in the Compact Toridal Hybrid (CTH) experiment (R₀ = 0.75 m, a ~ 0.2 m, B₀ ≤ 0.7 T, $\bar{n}_e = 0.2$ – $1.5 \ \mathrm{x} \ 10^{19} \ \mathrm{m}^{-3}),$ a flexible heliotron operating with significant ohmic current. At $B_0 = 0.5$ T, the edge vacuum rotational transform is variable from $\iota_{VAC}(a) = 0.05$ to 0.5gnd plasma currents up to 40 kA are driven in plasmas generated by electroncyclotron resonant heating at 14 GHz. At the lowest vacuum transform $\iota_{VAC}(a) =$ 0.05, current-driven disruptions leading to a complete loss of plasma can be induced for a total rotational transform $\iota_{TOT}(a) > 0.3$ at plasma densities $\bar{n}_e \ge 0.8 \ge 10^{19}$ m^{-3} . Disruptions are preceded by m = 2 tearing activity. Complete disruptions have not yet been observed in CTH with h $\iota_{VAC}(a) \geq 0.2$, although partial current collapses can take place. Efforts are underway to study the transitional behavior of the disruptions as the vacuum transform is continuously raised.

¹Supported by US DoE Grant No. DE-FG02-00ER54610. Co-author K.K. supported by a DoE summer National Undergraduate Fellowship.

Stephen Knowlton Auburn University

Date submitted: 17 Jul 2009

Electronic form version 1.4