Abstract Submitted for the DPP09 Meeting of The American Physical Society

Interpretation and implementation of an ion sensitive probe (ISP) as a plasma potential diagnostic.¹ ROMAN OCHOUKOV, DENNIS WHYTE, BRUCE LIPSCHULTZ, BRIAN LABOMBARD, PSFC MIT — An ISP is being developed as a robust diagnostic capable of measuring space potentials (Φ_P) in the boundary plasma of tokamaks. The ISP relies on the large difference between the ion and electron gyroradii ($\rho_i/\rho_e \sim 60$) to reduce electron collection at a collector which is oriented parallel to the magnetic field, and recessed behind the ISP shield a distance of $\sim \rho_i$. The shield is independently biased. By sweeping the collector voltage, while maintaining a constant voltage difference of a few volts between the shield and the collector (with $V_{WALL} < V_{COLLECTOR}$), we obtain only ion current. The ISP was studied in a magnetized plasma chamber (DIONISOS, B = 0.04 T, $n_e =$ 10^{16} - 10^{18} m⁻³, $\rho_e = 0.2$ mm) at MIT. A model of the ISP potential shows that the collected ion current should reach zero for $V_{WALL} \ge \Phi_P$ and that space-charge effects are critical to the probe operation. The plasma potentials obtained from the ISP match well the plasma potentials measured with an emissive probe over a wide range of plasma conditions in DIONISOS, yet with a more robust physical design than the emissive probe.

¹Supported by USDoE award DE-FC02-99ER54512.

Roman Ochoukov PSFC MIT

Date submitted: 16 Jul 2009

Electronic form version 1.4