Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning-Malmberg trap used for antihydrogen trapping

JOEL FAJANS, U.C. Berkeley, ALPHA TEAM — In many antihydrogen trapping schemes, antiprotons held in a short-well Penning-Malmberg trap are released into a longer well. This process necessarily causes the bounce-averaged rotation frequency Ω_r of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole, experiments show that many antiprotons (over 30% in some cases) can be lost to a hitherto unidentified bounce-resonant process when Ω_r is close to zero. The results of these experiments will be presented, as well as an analytic model and numeric simulations.

1This work was supported by CNPq, FINEP (Brazil), ISF (Israel), MEXT (Japan), FNU (Denmark), NSERC, NRC/TRIUMF (Canada), DOE (USA), and EPSRC and the Leverhulme Trust (UK).