Impact of load geometry on plasma formation and radiative properties of Z-pinches at stagnation

V.L. KANTSYREV, A.S. SAFRONOVA, A.A. ESAULOV, UNR, A.L. VELIKOVICH, NRL, L.I. RUDAKOV, Icarus Inc., A.S. CHUVATIN, Ecole Politechnique, K.M. WILLIAMSON, M.F. YILMAZ, G.C. OSBORNE, M.E. WELLER, I. SHRESTHA, V.V. SHLYAPTSEVA, UNR — The double planar wire array (DPWA) is the best x-ray radiator at 1 MA [V. Kantsyrev et al., HEDP 5 (2009), in press]. To improve its radiative performance by reducing the MRT instability growth rate, Al, brass and W DPWAs were skewed to produce initial axial magnetic field Bz. The diagnostics included x-ray devices and laser shadowgraphy. Experiments on 1.6 MA Zebra generator at UNR and MHD modeling have shown that Bz mitigated the MRT instability in the precursor. The stagnation starts in the middle of the A-K gap, and more uniform plasma column with a higher temperature Te is formed compared to a standard DPWA. The yield and power were comparable with standard DPWA. Highest yield and power were for W and brass, respectively. Feasibility of the x-ray pulse shaping was demonstrated in experiments. Research plans are discussed.

1Work supported by NNSA/DOE Cooperative Agreements DE-FC52-06NA27586, DE-FC52-06NA27588, and in part by DE-FC52-06NA27616.

V.L. Kantsyrev
University of Nevada, Reno

Date submitted: 18 Jul 2009