Nonlinear Wave Driven Processes in Plasmas

ROBERT BINGHAM, R.M.G.M. TRINES, STFC Rutherford Appleton Laboratory, L.O. SILVA, GoLP, J.J. SANTOS, CELIA, Universite, Bordeaux 1-CNRS-CEA, Talence, France, B. BRANDAO, J.T. MENDONCA, GoLP, IST Portugal, P.K. SHUKLA, Institut für Theoretische Physik IV — Nonlinear wave driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in plasmas. This approach can be implemented through the wave kinetic model. In this model, the incoming pump wave is described by wither a bunch (for coherent waves) or a rea (for random phase waves) of quasi-particles. We will present a generalized statistical theory describing a range of phenomena that include generation of zonal flows from drift mode turbulence, photon acceleration of intense lasers and intense radio waves and photon shocks. Possible applications include a diagnostic of large amplitude plasma waves and studies of zonal flows in planetary atmospheres will also be discussed.

Robert Bingham

STFC Rutherford Appleton Laboratory

Date submitted: 20 Jul 2009

Electronic form version 1.4