A 3D, Parallel, Solution-Adaptive Model for Radiative Shocks

KENNETH POWELL, PAUL DRAKE, JAMES HOLLOWAY, BART VAN DER HOLST, SMADAR KARNI, WILLIAM MARTIN, ERIC MYRA, IGOR SOKOLOV, QUENTIN STOUT, G. TOOTH, Center for Radiative Shock Hydrodynamics, University of Michigan — In this talk, a radiation hydrodynamics code for simulating radiative shocks will be described. The high-level validation problem for the code is one in which a 1 ns, 4 kJ laser pulse irradiates a Be disk, driving a shock into a Xe-filled plastic tube. The radiative precursor to the shock heats the wall of the tube, so that the there is a complex interaction among the shock driven by the ablated material from the wall, the laser driven shock, and the Be-Xe interface. The code is three-dimensional, solution-adaptive, and parallel. The radiation transport model in the current code is based on gray diffusion; work is underway to support higher-fidelity radiation transport models. The methodology used in the code and preliminary results of simulations will be presented.

1This work was supported in part by the US DOE NNSA under the Predictive Science Academic Alliance Program by grant DE-FC52-08NA28616.