28 GHz Gyrotron ECRH Upgrade for LDX

P.C. MICHAEL, P.P. WOSKOV, J.L. ELLSWORTH, J. KESNER, PSFC-MIT, D.T. GARNIER, Columbia University, M.E. MAUEL, R.F. ELLIS, University of Maryland — A 10 kW, CW, 28 GHz gyrotron is being implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. Higher density increases the heating of ions by thermal equilibration and allows for improved wave propagation in planned ICRF experiments. This represents over a 50% increase in the 17 kW ECRH from sources at 2.45, 6.4, and 10.5 GHz. The higher frequency will also make possible access to plasma densities of up to 10^{13} cm$^{-3}$. The 1 Tesla resonances are located above and below the floating coil near the dipole axial region. The gyrotron beam will be transmitted in TE$_{01}$ mode in 32.5 mm diameter guide using one 90° bend and a short < 5 m straight waveguide run. A Vlasov launch antenna in LDX will direct the beam to the upper 1 Tesla resonance region. A layout of the planned system will be presented.

1Supported by U. S. DOE
2Columbia University

Paul Woskov
PSFC MIT

Date submitted: 17 Jul 2009

Electronic form version 1.4