Pedestal regulation techniques for enhanced confinement regimes on Alcator C Mod

JERRY HUGHES, MIT PSFC

Recent research on Alcator C-Mod has achieved greater leverage on global confinement through both optimization and active modification of the edge pedestal. Pedestal scalings that are quite robust in typical H-mode operation can be broken, and particle and thermal transport in the edge barrier can be decoupled substantially. In H-mode, pedestal parameters show a striking sensitivity to the ion $B \times \nabla B$ drift direction, relative to the active x-point position, with considerable variability observed when the distance between separatrices is on the order of the pedestal width (≈ 5mm) or less, i.e. very near double null (DN). Near DN H-modes can have improved confinement factors ($H_{98} > 1$) as a result of elevated pedestal temperature (T_{ped}), with the edge regulated by benign small ELMs or continuous modes, regimes desirable for ITER and other future devices. Operating with a single null and with ∇B drift away from the x-point allows the formation of discharges with L-mode-like particle confinement, yet with excellent energy confinement. This enhanced confinement regime has demonstrated $H_{98} \approx 1$, $T_{ped} \approx 1$keV, and can be maintained steady-state with no ELMs by operating with high current and strong shaping, while holding input power below the L-H threshold to suppress particle barrier formation. Additional pedestal modification has also been obtained in H-modes by application of lower hybrid (LH) waves. Strong relaxation of the density pedestal is observed and accompanied by increases in T_{ped}, providing a substantial reduction in overall collisionality and somewhat improved confinement. Direct interaction of the LHRF with the edge plasma appears to play a role in enhancing the pedestal particle transport, which conveniently relaxes the discharge to a less dense and hotter state, one more conducive to core LH penetration and damping. In all cases, strongly modified pedestals affect core properties, often including surprising effects on core rotation.

1Supported by USDoE award DE-FC02-99-ER54512.