Experiments to assess preheat in blast-wave-drive instability experiments\[^1\] CHRISTINE KRAULAND, PAUL DRAKE, CAROLYN KURANZ, MICHAEL GROSSKOPF, University of Michigan, TOM BOEHLY, Laboratory for Laser Energetics, University of Rochester — The use of multi-kilojoule, ns lasers to launch shock waves has become a standard method for initiating hydrodynamic experiments in Laboratory Astrophysics. However, the intense laser ablation that creates moving plasma also leads to the production of unwanted energetic x-rays and suprathermal electrons, both of which can be sources of material preheating. In principle, this preheat can alter the conditions of the experimental setup prior to the occurrence of the intended dynamics. At the University of Michigan, ongoing Rayleigh-Taylor instability experiments are defined by precise initial conditions, and potential deformation due to preheat could greatly affect their accuracy. An experiment devised and executed in an attempt to assess the preheat in this specific case will be presented, along with the quantitative analysis of the data obtained and comparison with 2D simulations.

\[^1\]Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.

Christine Krauland
University of Michigan

Date submitted: 18 Jul 2009

Electronic form version 1.4