Degenerate Mixing of Electrostatic Modes on a Finite-Length Nonneutral Plasma Column

M.W. ANDERSON, T.M. O’NEIL, UCSD — Using cold fluid theory, we discuss the structure of standing electron plasma waves on a magnetized, nonneutral plasma column of finite length. Such eigenmodes can be surprisingly complex, involving a superposition of many component waves with different axial and transverse wavenumbers k_z and k_\perp. The dispersion relation\(^2\) for the individual components [i.e., $\omega = \omega_p k_z/\sqrt{k_z^2 + k_\perp^2}$] implies that waves with small k_z and k_\perp can be degenerate with waves with large k_z and k_\perp. Reflection at the column ends mixes these degenerate components, yielding the complicated structure. We have in mind eigenmodes on a cryogenic plasma column, where cold fluid theory is valid even for waves with large k_z and k_\perp. In a warmer plasma, kinetic effects (e.g., Landau damping of the large wavenumber components) spoils the degeneracy and kills the mixing.

\(^1\)Supported by NSF PHY-0903877.