High-brightness near-GeV energy electron beams from a laser wakefield accelerator for long-standoff nuclear interrogation1 NATHAN POWERS, SUDEEP BANERJEE, VIDYA RAMANATHAN, NATHANIEL CUNNINGHAM, NATE CHANDLER-SMITH, DONALD UMSTADTER, University of Nebraska-Lincoln, RANDY VANE, DAVID SCHULTZ, Oak Ridge National Laboratory, SHAUN CLARKE, SARA POZZI, University of Michigan, UNIVERSITY OF NEBRASKA-LINCOLN TEAM, OAK RIDGE NATIONAL LAB TEAM, UNIVERSITY OF MICHIGAN TEAM — High-brightness monochromatic electron beams are generated in a wakefield accelerator driven by a 100 TW laser. The energy can be varied from 20-800 MeV by varying laser and plasma parameters. Stable electron beams are obtained using self-injection and optical injection. The ability of these beams to penetrate large thicknesses of dense material and an angular spread of <5 mrad makes them suitable as active interrogation probes for long standoff nuclear activation of concealed nuclear materials. A series of (γ,xn) activation measurements were performed to demonstrate the viability of this technique. MCNP and GEANT Monte Carlo simulations are used to aid experiment design and interpretation.

1Work Supported by Defense Advanced Research Projects Agency, Department of Energy, and Domestic Nuclear Detection Office DHS

Sudeep Banerjee
University of Nebraska-Lincoln

Date submitted: 17 Jul 2009