Abstract Submitted for the DPP09 Meeting of The American Physical Society

The effect of two-dimensional turbulence on resistive-MHD reconnection NUNO LOUREIRO, IPFN, IST Lisbon, DMITRI UZDENSKY¹, Princeton University/CMSO, ALEXANDER SCHEKOCHIHIN, R. Peierls Centre for Theoretical Physics, University of Oxford, STEPHEN COWLEY, EU-RATOM/UKAEA Culham Science Centre, TAREK YOUSEF, Imperial College London — Two-dimensional numerical simulations of the effect of background turbulence on 2D resistive magnetic reconnection are presented. For sufficiently small values of the resistivity (η) and moderate values of the turbulent power (ϵ), the reconnection rate is found to have a much weaker dependence on η than the Sweet-Parker scaling of $\eta^{1/2}$ and is even consistent with an η -independent value. For a given value of η , the dependence of the reconnection rate on the turbulent power exhibits a critical threshold in ϵ above which the reconnection rate is significantly enhanced.

¹supported by NSF

Dmitri Uzdensky Princeton University/CMSO

Date submitted: 17 Jul 2009

Electronic form version 1.4