Abstract Submitted for the DPP09 Meeting of The American Physical Society

Optimization of the Internal Magnetic Configuration for High Bootstrap Current Fraction and High Beta for Steady-state¹ J.E. FER-RON, T.C. LUCE, P.A. POLITZER, J.C. DEBOO, T.W. PETRIE, C.C. PETTY, R.J. LA HAYE, GA, C.T. HOLCOMB, LLNL, A.E. WHITE, F. TURCO, ORISE, E.J. DOYLE, T.L. RHODES, L. ZENG, UCLA — A systematic scan of the safety factor (q) profile has been used to study the optimum for steady-state operation, which requires the maximum possible beta and bootstrap current fraction (f_{BS}) and good alignment between the total current density and the bootstrap current density (J_{BS}) . The n_e, T_e , and T_i profiles at constant $\beta_N = 2.7$ were measured in a scan of the minimum q (1.1 < q_{min} < 2) and q at the edge (4.5 < q_{95} < 6.5). ∇n_e is largest at the highest q_{min} and the pedestal n and T are highest at $q_{95} = 4.5$. Thus, with the q scaling of J_{BS} , the calculated f_{BS} is maximum at $q_{min} = 2$, but with J_{BS} that locally exceeds the total current density. The maximum achieved β_N was 3.1 at $q_{min} > 2$, and 3.8 at $q_{min} = 1.1$. These opposite trends in β_N and f_{BS} , and the improved current profile alignment for $q_{min} < 2$, point to intermediate q_{min} and q_{95} as optimal for steady-state operation.

¹Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-06OR23100, and DE-FG03-08ER54984.

John Ferron General Atomics

Date submitted: 17 Jul 2009

Electronic form version 1.4