Longitudinal Profile of an Electron Beam Generated from a Laser Wakefield Accelerator1 DMITRI KAGANOVICH, Icarus Research Inc., MICHAEL HELLE, Georgetown University, DANIEL GORDON, U.S. Naval Research Laboratory, EDWARD VAN KEUREN, Georgetown University, ANTONIO TING, U.S. Naval Research Laboratory — Electron beams produced from a laser wakefield accelerator are predicted to have bunch lengths approximately equal to one quarter of a plasma wavelength. For plasma densities on the order of 10^{19} cm$^{-3}$ this corresponds to lengths of $\sim 3\mu$m. Current techniques have proven unable to resolve such a short pulse at relativistic speeds. Work is underway to develop and test a noninvasive single-shot technique to measure the bunch length of high-energy ultrashort electron beams. The technique relies on the mixing of the relativistic beam’s transverse electric field with a probe laser within a nonlinear material. The theory of operation and the devices integration into the beam line will be discussed.

1This work is supported by the Department of Energy and Office of Naval Research

Michael Helle
Georgetown University

Date submitted: 20 Jul 2009

Electronic form version 1.4